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Abstract

The transient heat transfer rate from a particle depends on the ¯ow ®eld as well as the temperature ®eld

developed around the particle. The parameters that determine these two ®elds are the Reynolds number and the
Peclet number. A numerical study has been performed in order to determine the transient heat transfer from a
spherical particle in terms of both of these parameters. The governing equations of the problem are made
dimensionless and are solved by using the stream function-vorticity formulation. The solution of the equations is

achieved by using a stretched coordinate system and a tri-diagonal matrix algorithm. Good agreement of the
numerical results was observed with previous studies on drag coe�cients as well as with analytical and asymptotic
expressions derived in the past. The results show a strong dependence of the rate of heat transfer on the Reynolds

number, when the Peclet and Reynolds numbers are higher than one. # 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The problem of heat transfer from a sphere is a

classical one and has been the subject of several inves-
tigations in the past, starting with the pioneering work
of Fourier [1] whose primary interest was the cooling
of the planets. Because the problem is of prime scienti-

®c importance and, in addition, has many engineering
applications, it has been revisited many times. Most of
the theoretical work on the subject pertains to steady-

state solutions for the heat transfer from an isothermal
sphere. Acrivos and Taylor [2] used a singular pertur-

bation analysis and a Stokesian velocity distribution
around the sphere, to derive their well-known solution
for the steady-state heat transfer from a sphere at

small but ®nite Peclet numbers. Brenner [3] very soon
extended this solution to the case of non-spherical par-
ticles. Analytical and experimental results (in the form
of correlations) on the steady-state heat transfer coef-

®cients are abundant in heat transfer and transport
properties textbooks [4].
A solution to the problem of transient heat transfer

from a sphere at creeping ¯ow (Re � 0) appears in
Carslaw and Jaeger [5]. An analytical solution on the
unsteady heat transfer from a sphere at low Reynolds

numbers under steady velocity conditions was devel-
oped by Choudhury and Drake [6]. They used the
steady-state velocity ®eld developed by Proudman and
Pearson [7], which is applicable at Reynolds numbers

small in comparison to 1. Feng and Michaelides [8]
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also derived analytically an expression for the heat

transfer from a small sphere at low Peclet numbers

assuming a Stokesian velocity distribution around the

sphere and pointed out the e�ects of the history terms

in the resulting expressions. Abramzon and Elata [9]

conducted a numerical study for the transient heat

transfer from a rigid sphere at a wide range of Peclet

numbers, also assuming a Stokesian velocity distri-

bution around the sphere. Their study is valid at very

low Reynolds numbers. Because of this, their numeri-

cal results are restricted to extremely low Prandtl num-

bers (when Pe� 1), where there are very few practical

applications. It must also be pointed out that, because

of the importance of the problem in evaporation pro-

cesses, several studies have been conducted on the heat

and mass transfer from one or more evaporating

droplets at steady ¯ow conditions [10] as well as on

the interactions of these droplets [11].

In most practical applications of heat or mass trans-

fer from rigid spheres, the sizes and properties of the

particles are such that both Pe and Re are ®nite.

Because of this, results derived under the explicit or

implicit assumption that the values of either Re or Pe

are very low, may not be valid in practice.

Furthermore, it is apparent that the general problem

of transient heat and mass transfer from particles

encompasses two independent dimensionless par-

ameters, the Peclet number and the Reynolds number.

The two numbers account for the temperature and vel-

ocity ®elds, which determine the heat transfer process.

Therefore, any accurate study on the subject must

include both of these numbers explicitly. This task is
accomplished in this manuscript: we obtain the velocity

®eld around the spherical particle by numerically
solving the Navier±Stokes equations for the range of
Reynolds numbers for the sphere 0 to 2000. Then we
use this information to solve the energy equation and

to derive the rate heat transfer for a sphere for the
range of Peclet numbers from 0 to 1000.

2. Governing equations

The problem considered may be described without
any loss of generality as a unidirectional ¯ow with vel-

ocity U1 in the ÿe2 direction past a sphere of radius
a. In this case, the momentum equation for the vel-
ocity ®eld developed in the vicinity of the sphere, may

be written as follows:

~v � ~r~v � ÿ1

r
~rp� ~g� nr2~v �1�

and the continuity equation is

~r � ~v � 0 �2�

where r is the density of the ¯uid, n is the dynamic vis-
cosity of the ¯uid, the vector g is the gravitational
acceleration, p is the pressure and the vector v is the

velocity of ¯ow. Associated with the velocity ®eld are
the stream function, C and the vorticity vector z.
We ®rst make the equations dimensionless by using

Nomenclature

a radius
c speci®c heat capacity
E operator de®ned in Eq. (6)

erf error function
g gravitational acceleration
H(t ) heavyside function

k thermal conductivity
Nu Nusselt number
p pressure

r radial direction
Pe Peclet number based on radius
PeD Peclet number based on diameter
Re Reynolds number based on the radius

ReD Reynolds number based on the
diameter

t time

U velocity
v velocity

x, y coordinates in the stretched computational
domain

Greek symbols
z vorticity
y azimuthal coordinate

Y temperature
n kinematic viscosity
r density

ts characteristic time for conduction
c stream function
O vector related to vorticity

Subscript
f pertains to friction
p pertains to pressure

S pertains to the surface of the sphere
1 pertains to conditions far from the sphere
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the following expressions:

r � r 0

a
, C � C 0

U1a2
, v � v 0

U1
, t � t 0U1

a
�3�

where a prime denotes the dimensional value. Then the
equations are written in spherical coordinates and in
the stream function±vorticity formulation. Since the
problem is axisymmetric, the equations for the vor-

ticity vector z may be written as follows:

E 2C � O � z3
r sin y

�4�

and

sin �y�
�
@C
@ r

@

@y

�
O

r2 sin2 y

�
ÿ @C
@y

@

@r

�
O

r2 sin2 y

��

� 1

Re
E 2O �5�

The operator E is de®ned as follows:

E 2 � @ 2

@r2
� sin y

r2
@

@y

�
1

sin y
@

@y

�
�6�

In the last equation, Re is the Reynolds number,
de®ned in terms of the radius as follows:

Re � aU1
n

�7�

The latter is equal to one-half the particle Reynolds
number ReD, which is de®ned in terms of the diameter
of the sphere.

The boundary conditions for this problem are:

1. no velocity slip at the surface of sphere,
2. symmetry with respect to the x2-axis, and

3. unit velocity component in the direction of the vec-
tor e2 at in®nity.

Thus, the three boundary conditions may be written as

follows in terms of C and O:

C � @C
@r
� 0 at r � 1

C � O � 0 on y � 0, p

C4
1

2
r2 sin2 y as r41 �8�

2.1. Energy equation

We consider the case of the sphere experiencing a
step temperature change at time t � 0 from Y1 to Ys.
For simplicity, we assume the ambient ¯uid tempera-

ture of ¯uid far from the sphere to be Y1 (that is, in-
itially the ¯uid and the sphere are in equilibrium). We

de®ne the following dimensionless temperature:

Y � Y 0 ÿY1
Ys ÿY1

�9�

and, hence, we write the dimensionless unsteady heat

transfer equation as follows:

Pe
@Y
@ t
� Pe~v � ~rY � r2Y �10�

where the Peclet number Pe is de®ned in terms of the

radius of the sphere as follows:

Pe � rcaU1
k

�11�

c is the speci®c heat of the ¯uid, and k its conduc-

tivity.
We substitute for the velocity vector in terms of the

stream function and obtain the following dimensionless

form of the energy equation:

Pe
@Y
@ t
� Pe

�
@C
@ r

@

@y

�
Y

r sin y

�
ÿ @C
@y

@

@ r�
Y

r sin y

��
� D2Y

�12�

The initial condition for the energy equation is

Y � H�t� at r � 1 �13a�

where H(t ) is the unit step function. The boundary
conditions of this equation are

Y � 1 at r � 1,t > 0; and Y40 as r41 �13b�

Eqs. (5) and (12) are a system of non-linear equations,

which will be solved numerically. Eq. (5) will be solved
®rst and the results for the stream function (or vel-
ocity) ®eld will be used in the solution of Eq. (12),

with the boundary conditions as stipulated above.

3. Numerical method

Because the problem is symmetric, the numerical

computation is performed in a semicircular (r, y)
domain. Grid sensitivity analysis proved that an accu-
rate solution is obtained with a grid equal to 130 radii

when either Re or Pe is less than 10 and a grid extend-
ing to 90 radii when both Re and Pe are higher than
10. In order to achieve a more dense grid near the sur-

face of the sphere, a logarithmic coordinate stretch
(x � y, y � log r) was performed in the radial direc-
tion.
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It is observed that the numerical value of C is in the
range from 0 to exp(2yEnd) where yEnd is the maximum

coordinate in the computational domain (90±130).
This is a very large range and normally would result in
high numerical errors. For this reason, the stream

function C�x,y� is separated into two parts: a steady
potential part that accounts for the large variation in
C and a viscous correction c:

C�x, y� � Cp�x,y� � c�x,y� �14�

where Cp�x,y� is the well-known solution of the poten-
tial ¯ow problem, E 2Cp � 0, which is as follows:

Cp�x, y� � 1

2
�e2y ÿ eÿy � sin2 �x� �15�

Therefore, the velocity ®eld is obtained as the solution
of the following equations:�
@

@y2
ÿ @

@y
� @

@x 2
ÿ cot x

@

@x

�
c � r2O �16�

and

@

@x

�
O

e2y sin2 x

@c
@y

�
ÿ @

@y

�
O

e2y sin2 x

@c
@x

�

� 1

Re e y sin x

�
@

@y2
ÿ @

@y
� @

@x 2
ÿ cot x

@

@x

�
O �17�

with boundary conditions:

c � 0 at y � 0;
@c
@y
� 0 at y � yEnd; �18a�

and

O � @ 2c
@y2
� 3

2
sin2�x� at y � 0 �or r � 1�; �18b�

In a similar way, the governing equation for heat
transfer in the stretched coordinate system becomes

Pe
e y

sin �x�
@Y
@ t
� Pe

e2y sin2 �x�

"
@

@x

�
T
@C
@y

�
ÿ @

@y

�
T
@C
@x

�#

� 1

e y sin�x�

"
@ 2Y
@y2
� @Y
@y
� @

2Y
@x 2
� cot�x�@Y

@x

#
�19�

and the boundary conditions are

Y � 1 at y � 0; Y10 at y � yEnd �20�

For the solution of these di�erential equations we have
employed the control-volume formulation [12]. In
order to account for the fact that at relatively high Re

or Pe the solution does not easily converge, due to the
added weight of the advective term, an upwind scheme

[13] was used. For the solution of the transient energy
equation, we use a fully-explicit scheme. The upwind
scheme is also applied here for the advection term. The

discretized stream-vorticity equations and energy
equation are solved by a line-by-line TDMA
(TriDiagonal-Matrix Algorithm). It must be pointed

out that the algebraic equations for c and O were
solved simultaneously and that the boundary condition
for O at y � 0 is updated after every iteration. The

convergence criterion for the iterations is chosen, such
that the largest relative change of any quantity, f,
between two consecutive iterations is less than a par-
ameter, Er, which was equal to 10ÿ6.

jf�n�1� ÿ f�n�j
max

ÿ
jf�n�j,1

� REr �21�

The numerical procedure is robust and yields accurate
numerical results for very high Reynolds numbers. We
tested it for up to Re � 10,000 and encountered no dif-

®culties in convergence.

4. Results, validation and discussion

4.1. Drag coe�cient

In order to validate the numerical results, we ®rst
calculated the drag coe�cient for an isothermal sphere

and compared the results with those of Dennis et al.
[14] and LeClair et al. [15]. The calculations were made
using a grid of 100� 120 and the value of Er was
taken as 10ÿ6. The Reynolds number of the particle,

based on the particle diameter (ReD � 2aU1=n � 2Re)
was the parameter. The results of the calculations for
the drag coe�cient and the comparison with the

known results appear in Table 1.
It is evident that the values of the drag coe�cient

obtained from this study are in very good agreement

(less than 2% deviation) with the previous studies as
well as with Stokes' expression CD424=ReD as
ReD40. It must be pointed out that all the experimen-
tal studies on the subject have higher than 2% uncer-

tainty. Because of this, it is meaningless to assert
which one of the numerical studies compares better
with experimental data. We are con®dent on the accu-

racy of our data, because they result from a more
re®ned numerical method and a denser grid than those
used in the previous studies.

Using this method we were able to extend our
results to very high Re and ReD (up to 2000 and 4000,
respectively). We separated the dimensionless drag
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force on the particle into two parts: one due to the
pressure gradient, and the other due to friction;

F � Fp � Ff �22�

The pressure and friction components of the drag
force and the drag coe�cient may be calculated [16]
from the following expressions:

Fp � ÿp
�p
0

sin �2y�
"�y

0

�
@z
@ r
� z

r

�
jr�1 dy 0

#
dy �23�

and

Ff � ÿ2p
�p
0

zjr�1sin2 y dy �24�

The results for the two corresponding drag coe�cients
and their sum, CD are given in Table 2. It is obvious

that these results agree well with the asymptotic ana-
lytical results: CD424=ReD as ReD40, Cf416=ReD

as ReD40, Cp48=ReD as ReD40 and Cf � Cp as

ReD41.The results, up to ReD � 4000 also agree
very well with the correlations given by White [17] and
the recommended correlations by Clift et al. [18]. Fig.
1 depicts the results of this study with the values

obtained from the two correlations. It is obvious that

there is good agreement, a fact that validates the nu-
merical results of this study to approximately
ReD � 4000. It must be pointed out, however, that for
higher values of ReD, the numerical results underpre-

dict the correlations (as shown with the last point of
Fig. 1). This problem is due to vortex shedding from
the particle. At high ReD the e�ect of the shed vortices

on the ¯ow ®eld developed around the particle
becomes signi®cant outside the computational domain
and, therefore cannot be captured by any numerical

scheme, without a corresponding extension of the com-
putational domain.
Some of the intermediate results on the vorticity

®eld created around the sphere are given in Fig. 2a

and b. The two ®gures show the vorticity ®eld for
values of ReD 40 and 1000. It is obvious in the second
case that a well-formed wake exists downstream the

sphere, whose main characteristics are well captured by
the numerical scheme employed here.

4.2. Temperature ®eld and Nusselt numbers

The heat transfer from the sphere to the ¯uid may

be expressed by the instantaneous Nusselt number,
Nu(t ). The local Nusselt number is given by the
equation

Nux � @Y
@y
jy�0 �25�

and the average Nusselt number is the integral of this

quantity, taken around the sphere. The average
Nusselt number was computed in this study, utilizing
the previously obtained results for the velocity ®eld.
We validated the results of our numerical solution by

comparing them to steady-state data and correlations.
The Whitaker correlation [19] was used for this pur-
pose. The results of the comparison are depicted in

Fig. 3, for three Prandtl numbers 0.1, 1 and 10. The
predictions of the numerical method are well within
the uncertainty of the correlation, which is of the

order of 20%. Excellent agreement was also observed
with the experimental data and the resulting corre-
lations by Yuge [20].

Table 1

Comparison of the results for CD with other numerical studies

Reynolds number, ReD LeClair et al. [15] Dennis et al. [14] Present results

0.01 244.08 244.20 241.66

1 27.32 27.44 26.98

5 7.03 7.21 7.04

20 2.712 2.73 2.682

40 1.86 1.808 1.77

Table 2

Drag coe�cients for an isothermal sphere

Reynolds number, ReD Cf Cp CD

0.1 163.36 78.298 241.658

0.2 82.850 39.706 122.556

0.5 34.484 16.536 51.020

1 18.216 8.756 26.972

5 4.694 2.346 7.040

20 1.694 0.988 2.682

40 1.055 0.7152 1.7702

100 0.5714 0.5234 1.0948

500 0.1926 0.4072 0.5998

1000 0.1206 0.4000 0.5206

2000 0.07514 0.38684 0.46198

4000 0.04588 0.32476 0.37064
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For the transient heat transfer computations, the
dimensionless Dt was chosen to be in the range 0.001±

0.05, depending on the value of the Peclet number
(larger values of Pe correspond to smaller Dt).
An analytic solution for the Nusselt number is

known for this problem, valid for Stokesian ¯ow and
®nite but low Peclet numbers [8,21]:

Nu � 2

"
1� Pe

"
1

2
erf

�
Pe

��
t
p
2

�

� 1

Pe
�����
pt
p exp

�
ÿ Pe2t

4

�#
� 1

2
Pe2 ln Pe

# �26�

where t is made dimensionless by using the character-
istic time for conduction ts � rca2=k [23,24]. We have

compared this analytical solution with the numerical
results obtained for the case of Stokes' ¯ow and of
Pe � 0:25. The results of the comparison are shown in
Fig. 4, where it is obvious that, at long times, the two

solutions di�er by less than 3%.
The e�ect of the Reynolds number of the ¯ow on

the transient Nusselt number for a given Peclet number

is shown in Figs. 5±7. They correspond to Pe � 1, 10
and 100, respectively. The range of ReD in all the
®gures is from the very low values associated with

Stokes' ¯ow (creeping ¯ow) to 2000. The Stokes' ¯ow
results were obtained by assuming a Stokesian velocity
pro®le as in [9] for which the characteristic time is that

of conduction, ts � rca2=k. It was observed that for
Pe < 1 the e�ect of ReD on Nu is relatively low (the

fractional di�erence between the curves is at most 9%
in the case of Fig. 5). However, the e�ect of ReD
becomes signi®cant when Pe increases. As shown in

Figs. 6 and 7, where the maximum fractional di�erence
between the curves for Stokesian ¯ow and ReD � 2000
is more than 30% and more than 50%, respectively.
This indicates that at intermediate or high values of

Pe, one should not rely on results of studies where the
Reynolds number is implicitly or explicitly assumed to
be very small.

Oftentimes, the long-time asymptotic solution of a
transient problem is of interest to the scientist or en-
gineer. In the case of the problem of transient heat

transfer from a sphere, Acrivos [22] obtained such a
solution, valid for Pe > 5, assuming that the Reynolds
number of the ¯ow is very small. His expression is as
follows:

Nu � 1:249Pe1=3 � 0:922 �27�

Table 3 shows the results obtained from the asymp-

totic Eqs. (26) and (27) as well as the numerical results
obtained during this study. The results are given in
terms of a Peclet number (PeD) which is analogous to

ReD and is de®ned in terms of the particle diameter
(PeD � Pr ReD).
There is no asymptotic value for PeD � 2 because

Fig. 1. Comparison of results for the steady-state drag coe�cient with two correlations.
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Fig. 2. Vorticity lines around the sphere for ReD 40 and 1000.
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Fig. 3. Comparison of results for the steady-state Nusselt number with correlation.

Fig. 4. Comparison of numerical and asymptotic results for Stokesian ¯ow and and Pe � 0:25.
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Fig. 5. The e�ect of ReD on the transient Nu, for Pe � 1.

Fig. 6. The e�ect of ReD on the transient Nu, for Pe � 10.



Eq. (26) is valid for PeD < 1 and Eq. (27) for

PeD > 10.

It is observed that the numerical solution agrees

very well with the asymptotic steady-state solutions

[8,21,22]. It is also observed that the e�ect of the par-

ticle Reynolds number on the steady-state heat transfer

is insigni®cant when Pe is low, but that it becomes

very important, when Pe is high. A simple correlation

of these numerical data has been obtained. This corre-

lation, which is reduced to the solution by Acrivos [22]

at zero ReD and also captures the dependence of the

Nusselt number on the Reynolds and Peclet numbers,

is as follows:

Nu �
�
0:922� Pe1=3D � 0:1Re1=3D Pe1=3D

�
�28�

5. Conclusions

The problem of the transient heat transfer from a

sphere depends on both the velocity and the tempera-
ture ®eld, which are developed in the vicinity of the
sphere. Since the Reynolds number and the Peclet

numbers are the parameters that determine these ®elds,
the Nusselt number of the problem would depend on
both of these parameters. The numerical method used

Fig. 7. The e�ect of ReD on the transient Nu, for Pe � 100.

Table 3

The e�ect of ReD and PeD on the steady-state values of Nu

ReD\PeD 0.2 0.5 1 2 10 20 100 200 1000 2000

Eq. (26) or (27) 2.077 2.163 2.327 3.06 3.61 5.52 6.72 10.84 13.41

0 2.086 2.180 2.303 2.487 3.25 3.77 5.68 6.92 11.24 13.91

2 2.093 2.200 2.338 2.545 3.38 3.95 6.01 7.34 11.95 14.74

20 2.098 2.217 2.382 2.639 3.70 4.40 6.89 8.47 13.75 16.70

200 2.099 2.224 2.402 2.692 3.99 4.91 8.27 10.44 17.31 20.63

2000 2.099 2.224 2.403 2.694 4.01 5.08 9.20 11.86 18.93 21.54
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in this study enables one to perform calculations at
relatively high Reynolds and Peclet numbers. The

results of the study agree very well with previous nu-
merical studies as well as with analytical and asymp-
totic solutions developed in the past. The results also

show the dependence of Nu on both ReD and PeD. It
was found that when PeD < 2 the dependence of the
rate of heat transfer on the Peclet number is very

weak. However, at higher values of PeD, both the tran-
sient rate of heat transfer and its asymptotic solution
depend strongly on the value of ReD.
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